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Abstract
The longitudinal magnetoresistance of the unusual Bechgaard salt,
(TMTSF)2FSO3, has been studied up to 33 T under various pressures. In
this compound, a single series of the Shubnikov–de Haas (SdH) oscillation is
very pronounced for pressures between 5.2 and 11.8 kbar where the zero-field
ground state is superconducting. Unlike the case of the rapid oscillations in
most Bechgaard salts, the temperature and magnetic field dependence of the
oscillations is in good agreement with the Lifshitz–Kosevich formula, implying
the two-dimensional closed orbital motion of the electrons. The effective mass
of the electrons and Dingle temperature are estimated as 1.4 ± 0.05 m0 and
1.6–2.4 K, respectively. For an origin of the closed orbits, it is suggested
that incomplete nesting between open Fermi surfaces is induced by pressure.
Discontinuous change of the frequency, amplitude, and Dingle temperature of
the oscillations around 9 kbar indicates that the electronic state below and above
this pressure is different. According to the features of the SdH oscillations along
with the phase diagram of (TMTSF)2FSO3, the pressure dependence is divided
into three regions.

1. Introduction

The existence of a closed electron orbit on the Fermi surface (FS) is a necessary condition to
observe Shubnikov–de Haas (SdH) oscillations in low-dimensional electron systems. Although
the performance of a closed orbital electron motion is hard to envisage in (TMTSF)2X (TMTSF
= tetramethyltetraselenafulvalene and X = ClO4, ReO4, NO3, PF6, AsF6, etc), which are
primarily one-dimensional (1D) materials, two kinds of oscillations in the magnetoresistance
have been observed in most Bechgaard salts [1–7]. The first series, known as slow oscillations
(F0 ≈ 20–70 T, where F0 denotes the fundamental frequency), are successfully explained by
a series of transitions of the field-induced spin-density-wave (FISDW) states according to the
standard model [8, 9]. The second type of oscillations, so-called fast or rapid oscillations (ROs,
F0 ≈ 200–300 T), is very reminiscent of the conventional SdH oscillations from the viewpoint
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of the fact that the oscillations are periodic in 1/H and their frequency depends on only the c∗
component of the magnetic field. However, the unique temperature and field dependence of the
ROs in the Bechgaard salts is inexplicable through the conventional Lifshitz–Kosevich (LK)
analysis for typical closed orbital motions [10, 11]. The temperature dependence curve of the
amplitude of the ROs shows a maximum around 3 K and the oscillations eventually vanish
at very low temperature [12–15]. The field dependence of the amplitude also deviates from
the Dingle reduction behaviour. Such anomalies of the ROs in the Bechgaard salts arise from
their unique origin which is different from that in two-dimensional (2D) metals. It is generally
accepted that the ROs originate from the magnetic breakdown of reconstructed, nested quasi-
one-dimensional (Q1D) FS topology [13, 15], so application of the LK formula cannot account
for the oscillations in the Bechgaard salts.

Moreover, symmetry and orientational ordering of anions play an important role in
determining the properties of the ROs (number of series, frequency, etc). While a single
series of ROs appear only in the SDW phase for the centrosymmetric anion salts [2–4], in
the case of noncentrosymmetric anion salts they are observed both in the metallic and SDW
phases [5, 6, 13]. The ROs in the metallic phase of (TMTSF)2ClO4 are attributed to the
Stark quantum interference effect between two FS sheets where electrons proceed along the
same direction, due to the anion ordering along the b-axis. Furthermore, the ROs in the SDW
phase exhibit even more complicated behaviour, such as two out-of-phase series oscillations
with the same frequency in ClO4 salt [14] and two different series in NO3 salt [7]. This
complexity arises from a delicate interplay between the anion ordering and SDW nesting. A
recent proposition [4] that the frequency of the ROs in Bechgaard salts is proportional to the
anion size does not work for ReO4 and FSO3 anion salts.

Among the (TMTSF)2X compounds, the (TMTSF)2FSO3 salt was expected to exhibit
an exceptional difference since asymmetric FSO3 anions contain permanent electric dipole
moments. However, several investigations in the early 1980s [16–19] showed that it had a
rather simple pressure–temperature (P–T ) phase diagram and exhibited only a featureless,
monotonic field dependence in the positive magnetoresistance. As a result, the electronic
properties of this salt have remained unexplored.

In this paper, we report observation of the conventional SdH oscillations in the longitudinal
magnetoresistance (Rzz) of (TMTSF)2FSO3 under hydrostatic pressure up to 12.8 kbar and at
temperatures in the range 0.1–8 K. According to a recent investigation of the phase diagram
of (TMTSF)2FSO3, extraordinary complexity arises between 5 and 9 kbar, where at least four
different phases are established between room temperature and 1 K [20]. In this intermediate
pressure range, a single series of oscillations with F0 = 131 ± 1 T, corresponding to about
1.6% of the area of the first Brillouin zone, appears in fields above 5 T. The temperature and
field dependence of the oscillation amplitude in this compound fits well to the 2D LK formula
adopted by Harrison et al [21], indicating the existence of the 2D closed FS in the Q1D
(TMTSF)2X salt. From this LK analysis the effective mass (mc) and the Dingle temperature
(TD) are estimated as 1.4 ± 0.05 m0 and 1.6–2.4 K, respectively. The absence of frequency
beating, typical in charge transfer salts, indicates that the FS has no detectable warping along
the kz-direction. The pressure effect on the frequency and amplitude of the SdH oscillations,
effective mass, and scattering time are discussed within the scope of the new phase diagram
suggesting the separation of three different pressure regimes. A sudden change in the electronic
properties around 9 kbar gives us a clue for the existence of a new phase under the high pressure.

2. Experiments

(TMTSF)2FSO3 single crystals were grown by standard electrochemical techniques from
TMTSF molecules and tetrabutylammonium-FSO3. Tiny pieces of crystals about 0.5 mm
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Figure 1. The longitudinal magnetoresistance (Rzz ) of (TMTSF)2FSO3 at various pressures at
0.15 K (except 0.7 K for 7.7 kbar) with the magnetic field perpendicular to the ab-plane. The inset
is Rzz at 7.7 kbar. There is no sign of a field-induced transition at least up to 33 T.

long were cut from a bar sample and used after checking for the absence of voids. Two
20 µm gold wires were attached to each of the ab-planes with silver paste. The samples
were mounted in a self-clamped pressure cell so that the ab-planes were perpendicular to the
magnetic field. Pressure was applied at room temperature using a hydraulic press with a 1:1
mixture of Daphne 7373 oil and kerosene as the pressure medium. The pressure in the cell was
measured via the resistance of a manganin pressure gauge next to the sample. The pressures
presented here are those at 4.2 K. Pressures at low temperatures were independently calibrated
with the superconducting transition of high purity tin. The resistance of samples was measured
using the standard lock-in technique with a typical current of 10 µA. The experiments were
performed either with a 20 T superconducting magnet at Korea Basic Science Institute in
Taejon, Korea or with a 33 T resistive magnet at the National High Magnetic Field Laboratory
in Tallahassee, Florida.

3. Results and discussion

Figure 1 shows the low-temperature magnetoresistance at various pressures (5.2, 6.3, 7.7, 8.8,
11.9, and 12.8 kbar) at T = 0.15 K (except T = 0.7 K for 7.7 kbar). As the magnetic field
increases, a series of sinusoidal oscillations appears above 5 T after the superconductivity
(Tc � 3 K) is destroyed at a critical field. The critical field is highest at 8.8 kbar with a value
of 2.5 T, evaluated from the mid-transition field. While the background magnetoresistance
increases almost exponentially with the field, the oscillation amplitude monotonically increases
to 100% of the background resistance at 33 T, as shown in the inset of figure 1. It is worth
pointing out that there is no sign of a field-induced transition at least up to 33 T in the present
compound. The absence of the FISDW phases but with the presence of superconductivity is
quite exceptional for the (TMTSF)2X salts. This is also counter to Yakovenko’s suggestion that
the same pairing interaction gives rise to superconductivity at zero field and the FISDW under
magnetic field in the Q1D Bechgaard salts [22]. This idea was used to explain the absence
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Figure 2. The frequencies and amplitudes of the oscillations in figure 1 are obtained by fast
Fourier transform of the oscillatory component subtracting the background magnetoresistance at
each pressure.

of both the FISDW and superconductivity in (TMTSF)2NO3. Hence, the nonexistence of the
FISDW states in the presence of the superconductivity indicates that the electronic mechanism
of (TMTSF)2FSO3 under pressure is different from that of other Bechgaard salts.

In figure 1, the field dependence of the background magnetoresistance in the high pressure
regime (P � 11.9 kbar) is distinguished from those in the intermediate pressure regime
(5 kbar � P � 9 kbar). The resistance slope increases from about 0.014 T−1 in the
intermediate pressure regime to 0.046 T−1 in the high pressure regime. The oscillatory
behaviour is observable only in pressures between 5.2 and 11.9 kbar, where the ground
state is superconducting. The oscillations become visible at 5.2 kbar and have the largest
amplitude at 7.7 kbar. However, the oscillations vanish almost completely at 12.8 kbar where
the superconductivity is also nearly suppressed.

The fast Fourier transformation spectra for oscillations between 8 and 18 T are shown in
figure 2. The oscillation frequencies are 138, 130, 131, 131, 166 and 171 T at 5.2, 6.3, 7.7,
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Figure 3. The temperature dependence of the SdH oscillations between 0.1 and 3.5 K at 6.3 kbar.

8.8, 11.9 and 12.8 kbar, respectively. The frequency 171 T at 12.8 kbar was obtained directly
from the 1/H plot because of the very weak oscillation amplitude. From the frequency of the
SdH oscillations, the relevant cross section of the FS S is obtained using the Onsager relation
F = (h/4π2e)S. We obtained S = 1.248 × 1014 cm−2 for F0 = 131 T, which corresponds to
about 1.6% of the first Brillouin zone in the a∗b∗-plane (SFBZ = 7.6 × 1015 cm−2) estimated
from the lattice parameters given in [16]. The fundamental frequency is rather insensitive
to pressures between 5.2 and 8.8 kbar but increases abruptly by ∼30% at 11.9 kbar. It is
interesting that, at the same pressure where the fundamental frequency changes, the slope of
the background resistance also jumps.

In figure 3, the oscillatory part of the magnetoresistance at 6.3 kbar is plotted as a function
of inverse field at several temperatures between 0.2 and 3.2 K. The normalized oscillation
amplitude is defined as �R/Rb = (R − Rb)/Rb, where R is the overall resistance of the
sample and Rb is the non-oscillatory background resistance obtained from polynomial fits.
As illustrated in this figure, the oscillation amplitude grows monotonically with decreasing
temperature and with increasing field, a typical behaviour of the SdH effects due to the closed
orbital motion, but quite unexpected for (TMTSF)2X salts (for example, see figure 3 in [14]).
Considering only the first harmonic, the SdH oscillations can be represented by

�R

Rb
= A0

αT exp(−αmc/m0TD/H )

Hq sinh(αmc/m0T/H)
cos

(
F

H
− γ

)
= A cos

(
F

H
− γ

)
, (1)

where α = 2π2kBm0c/eh̄ = 14.69 T K−1, TD is the Dingle temperature, mc is the effective
mass, and m0 is the free electron mass. The power of H in equation (1) (the universal LK
formula) depends on the dimensionality of the closed motion. For the SdH amplitude in the
2D model q is 1 [23], whereas it is 1/2 in the 3D LK formula [11]. On the other hand,
for the 2D dHvA oscillations q becomes 3 [21]. As shown in figure 4(a), the temperature
dependence of the amplitude at H = 16.03 T for pressures 6.3, 7.7, and 8.8 kbar (symbols)
is in remarkably good agreement with the fit (broken lines) to equation (1). The effective
mass, which is independent of q , is 1.4 ± 0.05 m0 and is insensitive to pressure. Once
mc is obtained, TD can be extracted from the slope of the inverse field dependence of
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Figure 4. (a) The effective mass (mc) at pressures of 6.3, 7.7 and 8.8 kbar is estimated as 1.4 m0
from the temperature dependence of oscillation amplitude. (b) The Dingle plot at T = 0.1 K. The
data (symbols) are fitted to the theoretical curves by the 2D LK formula (dashed lines).

ln[(AH q) sinh(αmcTfixed/m0 H )], where A is the observed amplitude and q is 1. As our
study on angle-dependent magnetoresistance oscillations indicates, the FS of (TMTSF)2FSO3

possesses a 2D closed section in the form of a weakly warped cylinder in the same pressure
regime [24], therefore it is reasonable to estimate the Dingle temperature through the 2D LK
analysis. In figure 4(b) the data (symbols) exhibit very good agreement with the 2D LK
formula. The values of TD (∝relaxation time−1) obtained from this fit are 1.9 K (0.64 ps),
1.6 K (0.76 ps) and 2.4 K (0.5 ps) at 6.3, 7.7 and 8.8 kbar, respectively. The values of TD

with the 3D LK analysis are greater by a factor ln
√

2 (=0.34). It is worth noting that in the
case of α-(BEDT-TTF)2 MHg(SCN)4 (M = NH4 and K), the Dingle plot of the high field
SdH [25, 26] and dHvA [23] oscillations deviates from the 3D LK formula and gives a better
fit with the 2D model.

It is quite peculiar that the effective mass does not depend upon the applied pressure
in the intermediate pressure regime. The effective mass could not be obtained at other
pressures (5.2, 11.9 and 12.8 kbar) because of the weak oscillation amplitude even at the
lowest temperature, 0.1 K. So, the discussion below is limited to the intermediate pressure
regime. In principle, the effective mass derived from the temperature dependence of the SdH
amplitude can be considered as mc = mb(1 + λe−p)(1 + λe−e), where mb is the band mass,
λe−p the electron–phonon interaction and λe−e the electron–electron interaction [27]. Since mb
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Figure 5. Tc (◦) and mc (•) are plotted as a function of the pressure. mc is constant where Tc
remains unchanged with pressure below 9 kbar.

is virtually pressure-independent, the pressure dependence of mc provides direct information
on the pressure dependence of the interaction terms. As λe−p also plays an important role
on the superconductivity, the pressure dependence of the effective mass provides the relevant
information about the superconductivity mechanism in terms of the interactions. Therefore,
the insensitivity of the effective mass to the pressure is consistent with the constant Tc in this
pressure regime as shown in figure 5.

The pressure dependence of the oscillation amplitude and of the frequency for
(TMTSF)2FSO3 is summarized in figure 6(a). The oscillation frequency remains essentially
the same from 5.2 to 8.8 kbar, while the amplitude has a maximum in the middle of this same
interval, and decreases on each side. Moreover, the pressure dependence of TD follows that of
the amplitudes (i.e., the lower TD is, the larger the amplitude is). At 11.9 kbar, the oscillation
frequency jumps suddenly to 166 T, while its amplitude is continuously reduced after having
an abrupt decrease at 8.8 kbar. Then the frequency continues to increase further to 171 T
at 12.3 kbar whereas the oscillations disappear almost completely. The abrupt increase of
oscillation frequency, discontinuous change of the oscillation amplitude, and the change of
slope of the background resistance across 10 kbar may be signs of a pressure induced phase
change between intermediate and high pressure regimes.

As is well-known, information on the effective mass for other (TMTSF)2X salts cannot
be obtained from the LK theory because of the anomalous temperature and field dependence
of the ROs. However, since the oscillations in (TMTSF)2FSO3 are due to 2D closed electron
motion, it is reasonable to compare the characteristics of the SdH oscillations with those of
the 2D BEDT-TTF salts. According to extensive pressure-dependent studies on α-(BEDT-
TTF)2MHg(SCN)4 compounds (M = K, Tl, Rb, and NH4) [27–31] containing both the
Q1D open orbit and the Q2D closed orbit, and on κ-(BEDT-TTF)2Cu[N(CN)2]Br [32], the
SdH frequency, the effective mass and Tc are highly pressure dependent. The decrease of
both Tc and effective mass with pressure in the case of the 10 K superconductor κ-(BEDT-
TTF)2Cu(NCS)2 [33] and in α-(BEDT-TTF)2NH4Hg(SCN)4 (Tc ∼ 1 K) was also explicable
using the pressure dependence of the interaction terms.
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Figure 6. (a) The pressure dependence of the oscillation frequencies (◦) and their amplitudes (•).
The curves are only guides to the eye. (b) The P–T phase diagram of (TMTSF)2FSO3 is shown
to compare the behaviour of the SdH oscillations with the electronic properties under pressure.

However, the apparent insensitivity of the effective mass, oscillation frequency and
interaction parameters in (TMTSF)2FSO3 to pressure requires a different mechanism. While
the BEDT-TTF salts are intrinsically 2D systems, the 2D closed orbit of (TMTSF)2FSO3

can be formed only through the incomplete nesting of Q1D FS. (It is also assumed that the
Q1D FS of the BEDT-TTF salts do the same.) Then, as the real lattice parameters shrink as
pressure increases, the cross sectional area of intrinsic 2D FS expands. The 2D closed orbit
in (TMTSF)2FSO3 is not governed directly by the lattice compression but through the change
of the best nesting vector. As the pressure changes, so does the best nesting vector so as to
maximize the energy gain in such a way that the remaining Q2D FS cross section remains
more or less unchanged. In this case, the band mass may or may not depend on pressure. The
incomplete nesting scenario can explain the lack of variation of oscillation frequency and of
effective mass over quite a wide range of pressure.

To understand the SdH oscillation behaviour with pressure, it is useful to compare
the pressure dependence of the SdH oscillations in the context of the refined P–T phase
diagram [20] as shown in figure 6(b). Since a detailed explanation of the characteristics of
the each phase is well presented in [20], we here discuss only the properties related to SdH
oscillations. Due to clear differences in the electric properties, we can divide the pressure into
three regimes as follows.
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• In pressure regime I (below 5 kbar), neither SdH oscillations nor superconductivity appear.
Although the 89 K M–I transition at ambient pressure splits into two discrete transitions
as pressure is applied, the low-temperature state is still insulating up to 5 kbar.

• In the pressure range between 5 and 9 kbar, denoted as pressure regime II in figures 6(a)
and (b), the material remains metallic at low temperature and the superconducting
transition occurs at ∼3 K. Tc is more or less constant regardless of the normal state
resistance which varies over three orders of magnitude. The conventional SdH oscillations
of frequency ∼130 T observed in this pressure regime confirm the existence of a Q2D
closed orbit of 1.6% of SFBZ in this regime. As discussed earlier, the constancy of the
effective mass, of the SdH frequency, and of Tc is due to the adjustment of the nesting
condition of FS at this pressure.

• As the pressure increases above 9 kbar (pressure regime III in figure 6), the characteristics
of the SdH oscillations, such as the frequency and amplitude, suddenly change. Here, the
superconducting transition is rapidly suppressed at a rate of dTc/dP � −0.5 K kbar−1.
Moreover, the different field dependence of the background resistance (as seen in figure 1)
also indicates that the electronic mechanism in pressure regime III is different from that in
pressure regime II. It is possible that the new transition around 50 K (line 4 in figure 6(b))
in regime III is due to a new kind of anion ordering as the pressure increases above 9 kbar.

4. Summary

In summary, the pressure dependence of the magnetoresistance and the SdH oscillations leads
to a new phase diagram for the Bechgaard salt (TMTSF)2FSO3. We observe conventional
SdH oscillations in this salt between 5.2 and 12.8 kbar. Quite striking is that the oscillations
can be analyzed in terms of the archetypal 2D closed electronic motion, unlike those in most
(TMTSF)2X salts. A closed orbit can be formed by an imperfect nesting of FS under pressure.
It is also possible to consider that a separated ordering between the structural and dipole
ordering of FSO3 anions may occur and leave the small closed orbit on FS as the temperature
decreases. The superconductivity with high Tc, the absence of the FISDW, and the SdH
oscillations result from the same electrons on this small closed pocket. In particular, the
pressure dependence is divided into three different regimes as shown in figure 6, according
to the characteristics of the SdH oscillations as well as electronic properties. Systematic
studies such as x-ray diffraction analysis, electron spin resonance, and anisotropic susceptibility
measurements under pressure are necessary to correlate these phenomena.
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